

IPA Introduction and Analysis Match: Understanding biological mechanisms in transcriptomics or proteomics datasets

Stuart Tugendreich, Ph.D., Director & Global Prod Mgr, IPA, QIAGEN Bioinformatics

Sample to Insight

QIAGEN

Agenda

What is Ingenuity Pathway Analysis?

The QIAGEN Knowledge Base powers IPA

How can you find analyses similar or different to yours?

Case Study: Biological effects of gemfibrozil in liver (of rat)

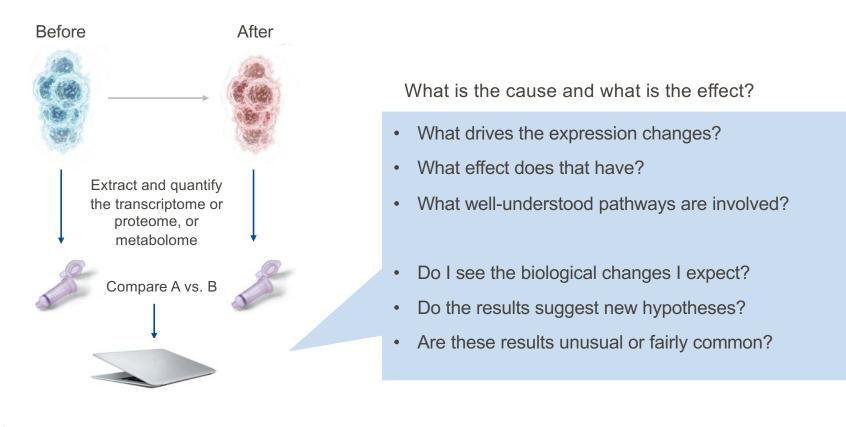
Land Explorer for IPA

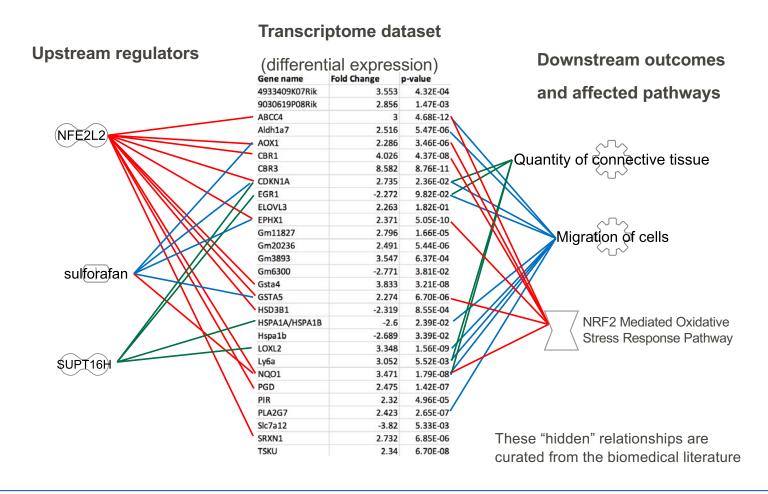
Conclusions

Legal disclaimer

QIAGEN products shown here are intended for molecular biology applications. These products are not intended for the diagnosis, prevention or treatment of a disease.

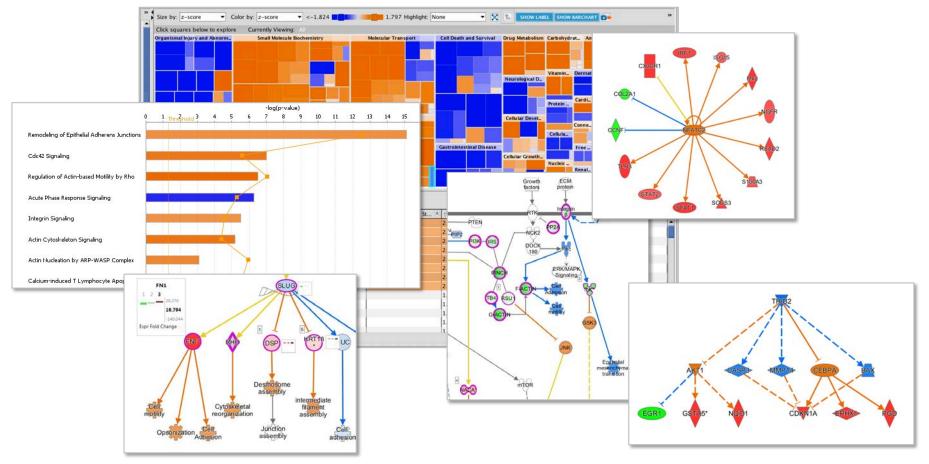
For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at **www.qiagen.com** or can be requested from QIAGEN Technical Services or your local distributor


What is Ingenuity Pathway Analysis?


Title, Location, Date 4

IPA was built to understand the biology of living systems

How do two samples differ from one another biologically?

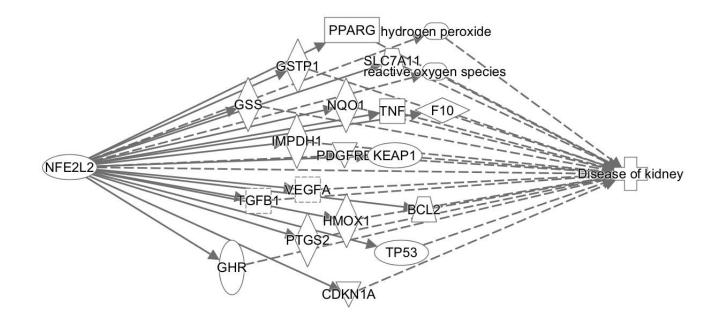


- Sample to Insight

IPA visualizes the hidden biology in a dataset

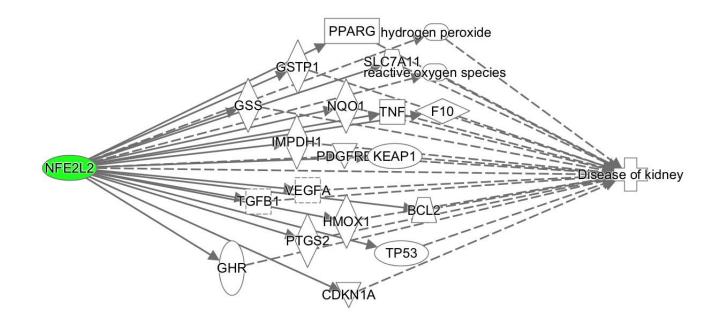
- Sample to Insight

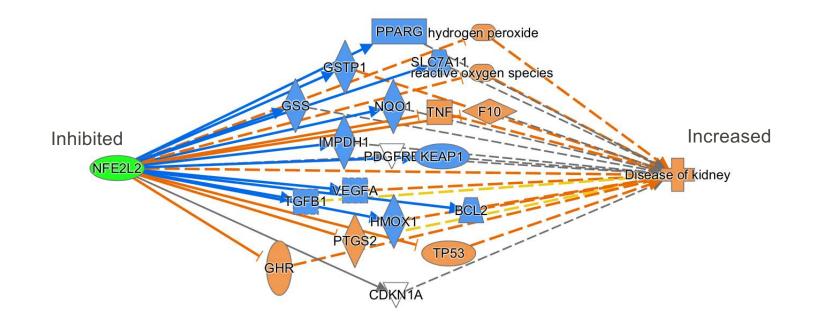
But you don't *need* a dataset to use IPA...



Sample to Insight –

Title, Location, Date 8




Search and explore (no dataset)

Search and explore (no dataset)

BioProfiler can be used to explore hypotheses

All molecules (genes, drugs, etc.) known to connect to nephritis

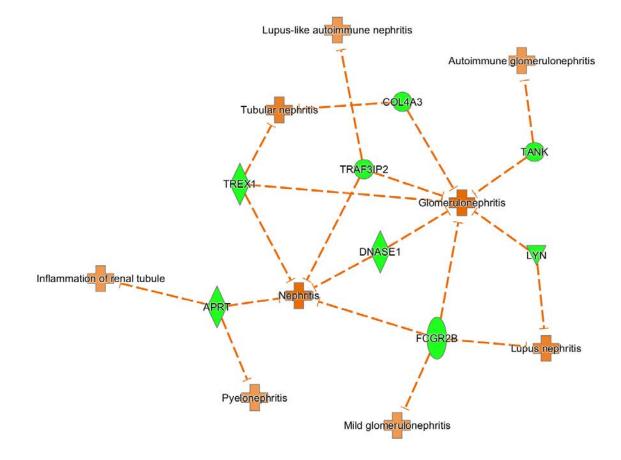
ADD TO MY PATHO	VAY ADD TO MY LI	ST DISPLAY AS NE	TWORK CREATE DA	TASET 📕 📑 LIMIT TO DATAS	ET		Symbol 2-0	leoxyglucose – CH	RM4 (p1 of 6)	- [23]	More In
Add/I	Remove column(s)	Disease or Funct	ion Evidence								÷ Ad
Symbol 🔳	Molecul 🝸 🗙	Molecul T ×	Effect o T 🗙	Disease or Function	T	Mutation T ×	Biomark T 🗵	Species T ×	Drug tar T 🗵	Expressi 🝸 🗶	Causal o T
2-deoxyglucose	chemical drug	increased activity	decreases	Glomerulonephritis	all 1	wild type	not applicable	Mouse	not applicable	not applicable	causal
26s Proteasom	complex	decreased acti	affects	IgA nephropathy, Lupus neph	all 2	wild type	not applicable	Human	phase 4	not applicable	correlation
3-methyladenin	chemical toxicant	increased activity	increases	Nephrotoxic nephritis	all 1	wild type	not applicable	Mouse	not applicable	not applicable	causal
ABAT	enzyme	decreased acti	affects	Primary focal segmental glom	all 1	wild type	not applicable	Human	phase 2/3	not applicable	correlation
abatacept	biologic drug	increased activity	decreases	Lupus nephritis	all 1	wild type	not applicable	Uncategorized	phase 3	not applicable	causal
ABCA1	transporter	decreased acti	affects, increases	Glomerulonephritis	all 3	homozygous,k	not applicable	Mouse,Human	not applicable,	not applicable	causal,correlat
abelmoschus ma	biologic drug	increased activity	decreases	IgA nephropathy	all 1	wild type	not applicable	Uncategorized	phase 4	not applicable	causal
ACE	peptidase	decreased acti	affects, increases	Glomerulonephritis	all 4	homozygous,k	not applicable	Uncategorized,	not applicable,	not applicable	causal,correlat
acetaminophen	chemical drug	increased activity	decreases	Lupus nephritis	all 1	wild type	not applicable	Uncategorized	phase 3	not applicable	causal
ACTN4	transcription re	decreased acti	affects	Acute phase crescentic glome	all 5	wild type	not applicable	Rat,Human	not applicable	downregulation	correlation
ADD2	other	increased activity	affects	IgA nephropathy	all 1	wild type	not applicable	Uncategorized	not applicable	not applicable	correlation
ADORA1	G-protein coup	decreased acti	affects	Glomerulonephritis	all 1	wild type	not applicable	Human	phase 3	not applicable	correlation
ADORA2A	G-protein coup	decreased acti	affects	Crescentic glomerulonephritis	all 2	wild type	not applicable	Rat,Human	not applicable,	not applicable,	correlation
ADORA2B	G-protein coup	decreased acti	affects	Nephritis	all 1	homozygous,k	not applicable	Mouse	not applicable	not applicable	causal
AGER	transmembran	decreased acti	decreases, incr	Lupus nephritis, Nephritis	all 2	homozygous,k	not applicable	Mouse	not applicable	not applicable	causal
AGT	growth factor	decreased acti	increases	Interstitial nephritis, Nephritis	all 3	homozygous,k	not applicable	Rat, Mouse, Hu	not applicable	not applicable	causal
AGTR1	G-protein coup	decreased acti	affects, increases	Glomerulonephritis	all 3	homozygous,k	not applicable	Mouse,Human	not applicable,	not applicable	causal, correlat
Agtr1b	G-protein coup	decreased acti	increases	Nephritis	all 1	homozygous,k	not applicable	Mouse	not applicable	not applicable	causal
ALB	transporter	increased activity	affects	Idiopathic interstitial nephritis	all 2	wild type	efficacy, not ap	Human	not applicable	not applicable,	correlation
ALDH5A1	enzyme	decreased acti	affects	Primary focal segmental glom	all 1	wild type	not applicable	Human	phase 2/3	not applicable	correlation
aliskiren	chemical drug	increased activity	decreases	IgA nephropathy	all 3	wild type	not applicable	Uncategorized,	not applicable,	not applicable	causal
AMBP	transporter	decreased acti	increases	Nephras	all 1	homozygous,k	not applicable	Mouse	not applicable	not applicable	causal
amdinocillin	chemical drug	increased activity	decreases	Pyelmephritis	all 1	wild type	not applicable	Uncategorized	phase 4	not applicable	causal
mmonium trich	chemical drug	increased activity	decreases	Glomerulonephritis	all 1	wild type	not applicable	Rat	not applicable	not applicable	causal
angiotensin_co	chemical drug	increased activity	decreases	I A nenhronathy	all 1	wild type	not applicable	Uncategorized	nhase 3 nhase 4	not applicable	causal

Note how the Ingenuity Ontology is used to gather all nephritis subtypes

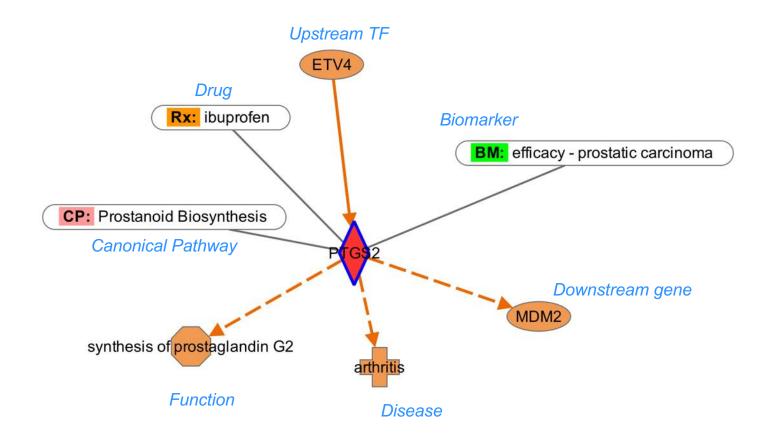
— Sample to Insigh

BioProfiler can be used to explore hypotheses

Filtering: All molecules when DECREASED in activity, INCREASE nephritis


ADD TO MY PA	FRWAY ADD TO MY L	ST DIEPLAY AS NE	TWORK CREATE	DATASET 🚨 📑 LIMIT TO DATASE	T			Symbol	ABCA1 – PSEN1	(p1 of 2) 🔻 🖾 🕻	🖸 🔟 More
Aolec + Ad	d/Remove column(s)	Disease or Funct	ion Evide :e								± A
Symbol	Molecul T ×	Molecul 👅 🗵	Effect o 🕱	X Disease or Function	T	Mutation 🝸 🗵	Biomark T ×	Species 🝸 🛪	Drug tar T 🕨	Expressi 🔻 🕨	Causal o
ABCA1	transporter	decreased acti	increases	Glomerulonephritis	all 1	homozygous,k	not applicable	Mouse	not applicable	not applicable	causal
ACE	peptidase	decreased acti	increases	Interstitial nephritis, Nephritis	all 2	homozygous,k	not applicable	Mouse	not applicable	not applicable	causal
AGER	transmembran	decreased acti	increases	Lupus nephritis	all 1	homozygous,k	not applicable	Mouse	not applicable	not applicable	causal
AGT	growth factor	decreased acti	increases	Interstitial nephritis	all 1	homozygous,k	not applicable	Mouse	not applicable	not applicable	causal
AGTR1	G-protein coup	decreased acti	increases	Nephritis	all 1	homozygous,k	not applicable	Mouse	not applicable	not applicable	causal
Agtr1b	G-protein coup	decreased acti	increases	Nephritis	all 1	homozygous,k	not applicable	Mouse	not applicable	not applicable	causal
AMBP	transporter	decreased acti	increases	Nephritis	all 1	homozygous,k	not applicable	Mouse	not applicable	not applicable	causal
APCS	other	decreased acti	increases	Glomerulonephritis	all 1	heterozygous,h	not applicable	Mouse	not applicable	not applicable	causal
APRT	enzyme	decreased acti	increases	Inflammation of renal tubule	all 3	homozygous,k	not applicable	Mouse	not applicable	not applicable	causal
ARHGDIA	other	decreased acti	increases	Interstitial nephritis	all 1	homozygous,k	not applicable	Mouse	not applicable	not applicable	causal
BAK1	other	decreased acti	increases	Glomerulonephritis	all 1	homozygous,k	not applicable	Mouse	not applicable	not applicable	causal
BAX	transporter	decreased acti	increases	Glomerulonephritis	all 1	homozygous,k	not applicable	Mouse	not applicable	not applicable	causal
BCL2L11	other	decreased acti	increases	Autoimmune glomerulonephritis	all 2	heterozygous,h	not applicable	Mouse	not applicable	not applicable	causal
BMF	other	decreased acti	increases	Autoimmune glomerulonephritis	all 1	homozygous,k	not applicable	Mouse	not applicable	not applicable	causal
CIQA	peptidase	decreased acti	increases	Glomerulonephritis	all 1	homozygous,k	not applicable	Mouse	not applicable	not applicable	causal
C3	peptidase	decreased acti	increases	Glomerulonephritis	all 1	homozygous,k	not applicable	Mouse	not applicable	not applicable	causal
C4A/C4B	peptidase	decreased acti	increases	Glomerulonephritis	all 1	homozygous,k	not applicable	Mouse	not applicable	not applicable	causal
CCR1	G-protein coup	decreased acti	increases	Glomerulonephritis	all 1	homozygous,k	not applicable	Mouse	not applicable	not applicable	causal
CCR7	G-protein coup	decreased acti	increases	Nephritis	all 1	homozygous,k	not applicable	Mouse	not applicable	not applicable	causal
CD151	other	decreased acti	increases	Interstitial nephritis	all 1	homozygous,k	not applicable	Mouse	not applicable	not applicable	causal
CD19	transmembran	decreased acti	increases	Nephritis	all 1	homozygous,k	not applicable	Mouse	not applicable	not applicable	causal
CD1D	other	decreased acti	increases	Glomerulonephritis	all 3	homozygous,k	not applicable	Mouse	not applicable	not applicable	causal
CD22	transmembran	decreased acti	increases	Moderate immune complex n	all 1	homozygous,k	not applicable	Mouse	not applicable	not applicable	causal
D274	enzyme	decreased acti	increases	Nephritis	all 1	wild type	not applicable	Mouse	not applicable	not applicable	causal
072	transmembran	decreased acti	increases	Glomerulonenhritis	all 1	homozvanus k	not annlicable	Mouse	not annlicable	not annlicable	causal

Visualize several on a network \rightarrow


Visualizing BioProfiler results as a network

Specific subtypes of nephritis are carried over to the network

- Sample to Insight

The basis of IPA: molecular information curated from the literature

Gather this information for nearly every gene. Inferences can be made from the resulting networks.

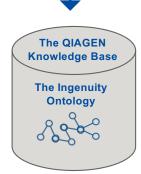
----- Sample to Insight

QIAGEN

The QIAGEN Knowledge Base powers IPA

A massive, manually curated Knowledge Base

Ingenuity Literature Findings


Ingenuity[®] Expert Findings –

Manually curated Findings from the full-text, with contextual details, from top journals.

Ingenuity® ExpertAssist Findings -

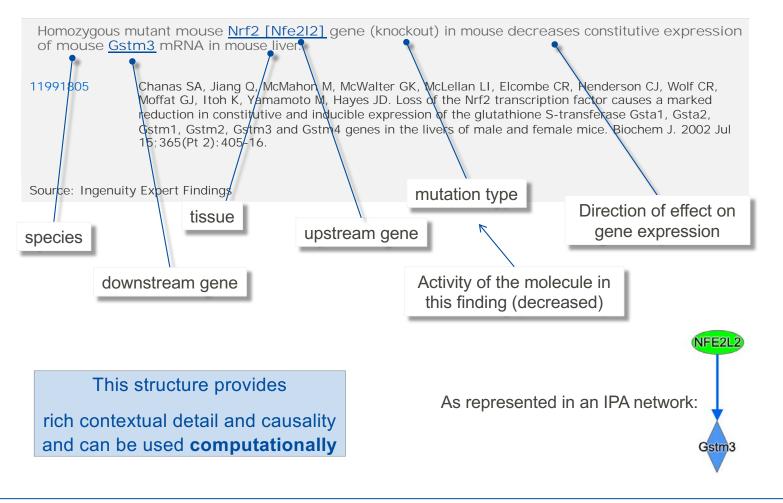
Automated text Findings that are manually reviewed, from abstracts covering a broader range of publications. Comprise a small % of IPA's findings.

Update weekly for last ~20 years

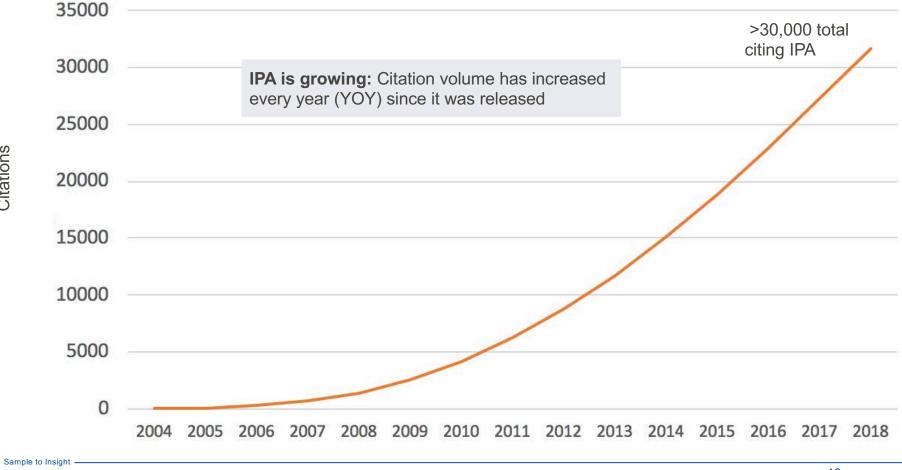
Ingenuity Modeled Knowledge

Ingenuity[®] Expert Knowledge – Content We model such as Canonical Pathways, toxicity lists, etc.

Ingenuity® Supported Third Party Information -


Content areas include Protein-Protein, miRNA, biomarker, clinical trial information, and others

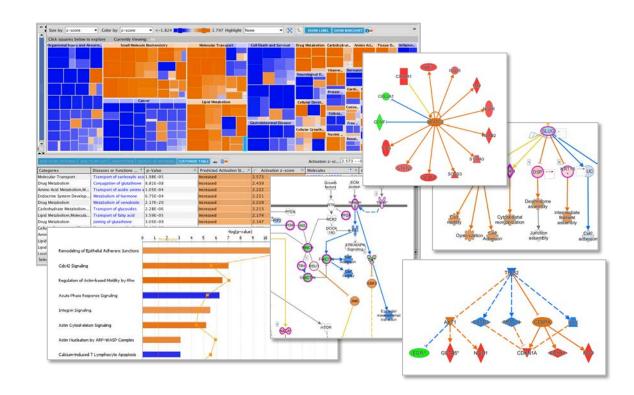
>6.7 M findings



- Sample to Insight

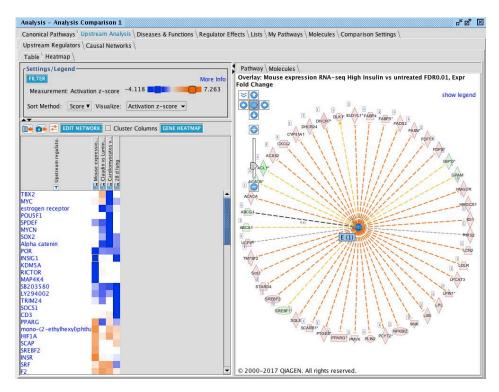
How IPA content is different: context and direction of effect

IPA cumulative citation volume. IPA was released in late 2003



18

IPA visualizes the hidden biology in a dataset


But how do you find other analyses that resemble yours?

- Sample to Insight

Until now, manually create a Comparison Analysis

- Sample to Insight

Analysis Match makes it easy to find insights

Discover which analyses resemble yours, to uncover insights from mechanistic similarities and differences

Summary \	Canonical Pat	thways Upst	ream Analysi:	Diseases &	& Functions \	Regulator Effe	ects \ Lists \ M	ly Pathways	Molecules \	Analysis Mate	ch \
Upstream F	legulators C	ausal Networ	'ks \								
ADD TO MY F	ATHWAY AD	D TO MY LIST	2		Activation	z-sc 6.06	7 - 3.803	(p1 of 29)	- « »	More	Info
										+ Add/Remo	ove
Maste 🝸		Mol 🝸 🗵	Par 🝸 🗵	De 🝸 🗙	Predic ×				Tar 🝸 🗙	Ca 🝸 🗵	
CEBPD	† 2.253	transcripti	Call 6	2	Activated	6.067	3.73E-36	1.00E-04	all 235	235 (6)	6
INSR	+-1.812	kinase	+all 1	1	Activated	5.908	1.39E-17	1.00E-04	1all 66	66 (1)	1
1D-chiro-ir		chemical	1all 3	2	Activated	5.889	3.77E-20	1.00E-04	1all 75	75 (3)	2
benzylamin		chemical	ball 4	2	Activated	5.889	5.40E-20	1.00E-04	1all 75	75 (4)	3
HPSE		enzyme	Eall 8	2	Activated	5.713	2.52E-22	8.90E-03	all 206	206 (8)	8
UBA1	† 2.339	enzyme	all 61	3	Activated	5.611	1.74E-43	1.00E-04	all 545	545 (61)	6
ciglitazone		chemical	▶all 24	2	Activated	5.590	1.41E-37	1.00E-04	all 320	320 (24)	2
LPIN1	† 2.062	phosphat	↑all 7	2	Activated	5.575	7.09E-30	1.00E-04	all 181	181 (7)	7
D-thioctic a		chemical	Aall 4	2	Activated	5.480	1.04E-22	1.00E-04	all 112	112 (4)	4
hexarelin		chemical t	Aall 6	2	Activated	5.426	8.10E-32	1.00E-04	all 181	181 (6)	6
mibolerone		chemical	all 31	3	Activated	5.353	2.98E-41	6.00E-04	all 554	554 (31)	3
hydroxyfluta		chemical	all 35	3	Activated	5.345	1.57E-38	1.70E-03	all 547	547 (35)	3
testosteron		chemical	all 39	3	Activated	5.250	3.22E-39	1.10E-03	all 549	549 (39)	3
1.1-bis(3'-		chemical r	1all 3	2	Activated	5.185	2.05E-29	1.00E-04	all 162	162 (3)	3
ZMIZ2	† 1.861	transcripti	all 31	3	Activated	5.184	8.28E-37	2.70E-03	all 527		3
			- 11 - 1		• • • •			le one or			
•	otal rows : 0			333333							Þ

	And for first and some said the second
Match against	The part of the second
Match ayamst	(Allow for one of the second s
	And Articles (1997) And Articles (1997)
	And the second states
vour own ondvood	States for an 2.100
your own analyses	And the set of the set
	And the part of the second sec
and	The family former [1993]
anu	Annual Inc. and Activity (1997) Annual 1998 Activity (1997)
	And the set of the set
	Annual frame of 1991
	And Annual Property and An
	And The set of the set
	And the fame from from the state of the stat
	100 / 100 / 100 / 100 100 100 100 100 10
	And the first of the second se
>56,000 other	ALTER ALTER A. 211 ALTER A. 22.2.2
	Annual Survey of the second se
curated	And Annual Property and An
00.10.100	And the part of the second sec
	And the first all some in the second
	ALL OF THE PARTY O
analyses	
anaryses	

Which analyses have similar Upstream Regulators, Canonical Pathways, Diseases & Functions, etc?

—— Sample to Insight

Build confidence in your results

• Identifying shared biology across disparate diseases, tissues, treatments and more.

Develop greater insights

• Upstream drivers, downstream phenotypes and biological pathways.

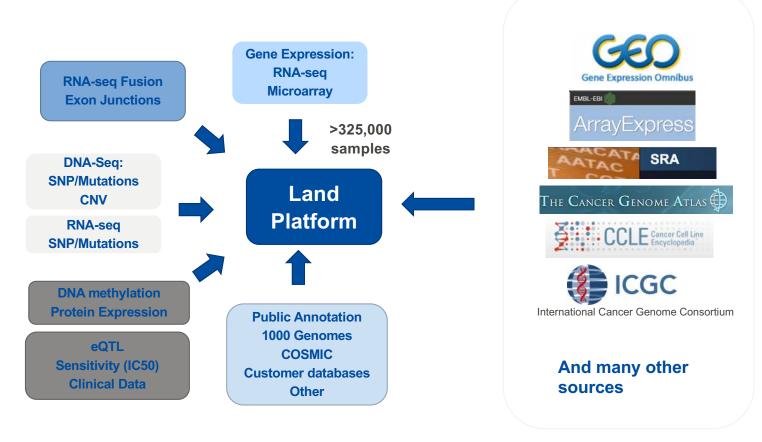
Identify key regulators/pathways

• Similarly activated/inhibited across the groups

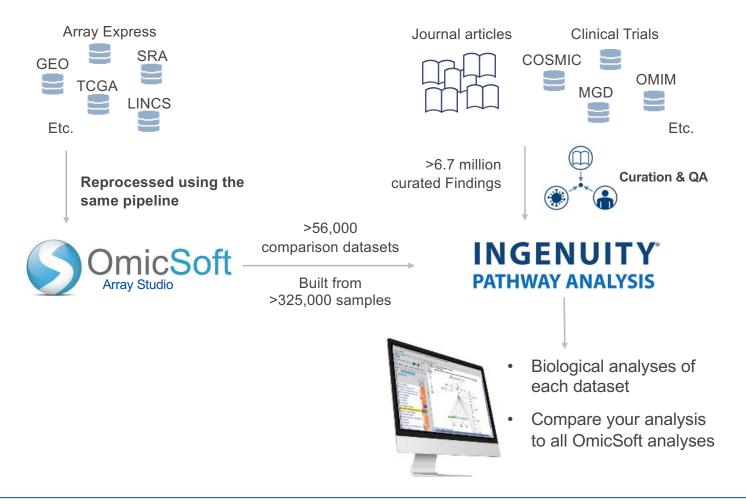
Easily evaluate critical hypotheses

· Across an extensive collection of public data

Applications


Sample to Insight

- · Biomarker discovery through comparison analysis
- Mechanism of action
- Target discovery/validation
- Drug repurposing


>56,000

>56,000 comparison datasets from OmicSoft Lands in IPA

OmicSoft Lands, expression data in IPA

Analysis Match combines knowledge with data

QIAGEN

What the >57,000 Land Comparisons represent (End of Sept. 2019)

DiseaseLand

HumanDisease (8891)

- 519 diseases
- 259 tissues
- 66 expression platforms
- 1577 RNA-seq datasets

MouseDisease (10,326)

- 332 diseases
- 223 tissues
- 55 expression platforms
- 4078 RNA-seq datasets

RatDisease (846)

- 37 diseases
- 62 tissues
- 329 RNA-seq datasets

LINCS (28,234)

- 23 cell lines
- 374 chemical treatments or gene overexpression
- 226 different targets (or groups of target genes)

OncoLand

OncoGeo (2859)

- 141 cancers
- 73 tissues
- 42 expression platforms
- 944 RNA-seq datasets

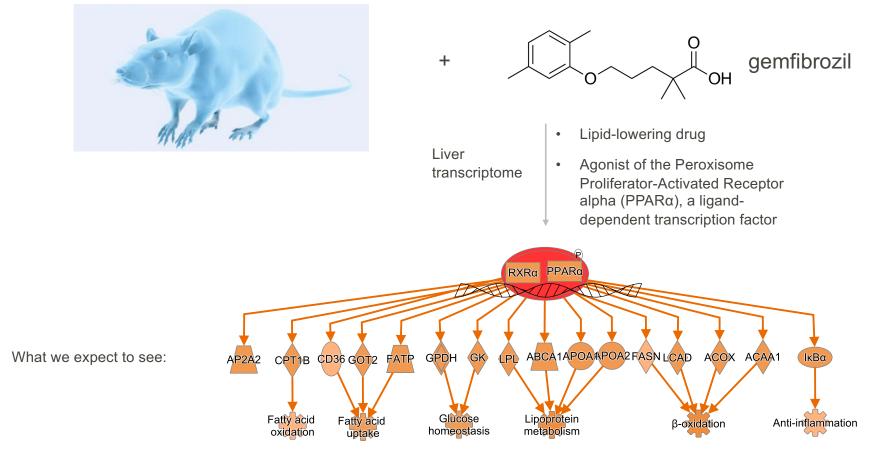
TCGA (4789)

- 33 cancers
- 27 tissues
- 385 different mutational status / clinical signs

Pediatrics (444)

- 47 cancers
- 23 tissues

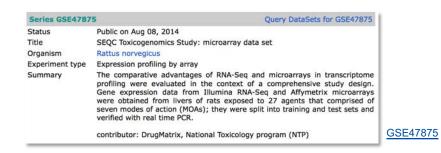
Metastatic Cancer (81)


- 27 cancers
- 18 tissues

Hematology (1387)

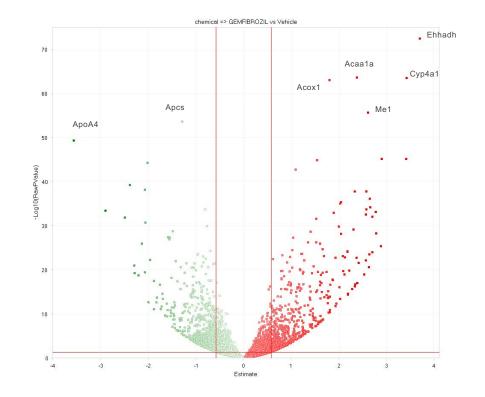
- 46 cancers
- 73 cell types
- 196 RNA-seq datasets

Case Study: Biological effects of gemfibrozil in liver (of rat)



- Sample to Insight

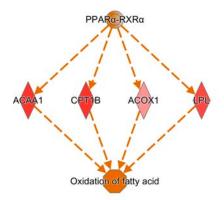
Using IPA to explore the biology of gemfibrozil in rat liver


Analysis of liver expression of gemfibrozil-treated rats for 7 days compared to control

- 3 rats treated w/ 700 mg/kg for 7 days vs. 6 rats with corn oil control
- Illumina HiScanSQ FASTQ processed in OmicSoft Array Studio
- Analysis cutoffs in IPA:

Sample to Insight

- Fold change <-1.5 or >1.5
- Adjusted p-value < 0.01
- Max of group means > 10 FPKM
- Analyzed 503 down-regulated and 461 upregulated genes

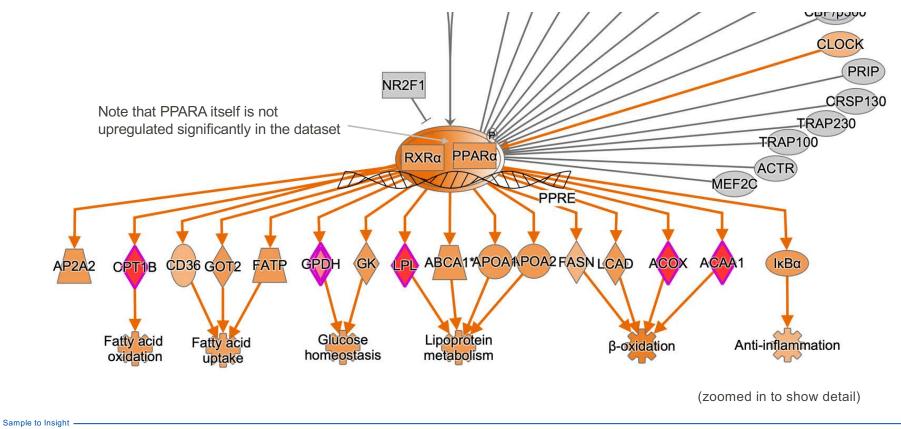


IPA summary: Confirmation of known biology + new insights

Effects on regulators and pathways (IPA Core Analysis)

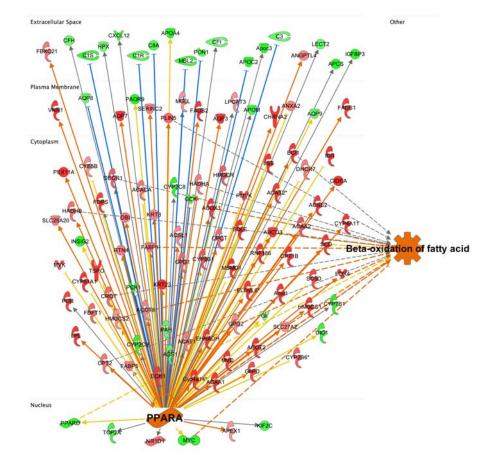
- ↑ PPARα upstream regulator
- Cholesterol biosynthesis
- ↑ Fatty acid β-oxidation
- ↓ LXR/RXR pathway
- ↓ Cholesterol transport

Similarities and differences to other analyses (Analysis Match)


- Confirm known effects
 - Matches to well-known PPAR agonists such as fenofibrate, tesaglitazar, rosiglitazone, and amorfrutin (mouse, rat, and human and in liver and adipose tissue).
- Insights into related biology
 - Weaker but significant matches with conditions which (like gemfibrozil) appear to activate the key cholesterol regulators SREBF1, SREBF2, and SCAP but (unlike gemfibrozil) *don't* activate PPARα.
 - Anti-match to siRNA knockdown of Prdm16 in mouse white adipose. Prdm16 regulates PPAR activity in adipose tissue and is a
 master transcriptional coregulator in brown adipocytes, promoting expression of brown fat-selective genes and repression of whiteselective genes.
- Potential for drug discovery
 - Anti-match to severe atopic dermatitis samples (where PPARα is "inhibited"). Possible treatment with PPARα agonists.

— Sample to Insight

Confirm known biology (we see the expected target activation)


Activation of RXRa/PPARa by gemfibrozil (predicted from the gemfibrozil RNA-seq data)

QIAGEN

Confirm known biology (expected drug target, pathways, and functional effects)

Examples of pathway impacts

Canonical Pathway	B-H p-value	z-score
Superpathway of Cholesterol Biosynthesis	3.14E-14	4.796
Ketogenesis	7.05E-08	2.646
Acyl-CoA Hydrolysis	3.33E-06	2.449
Fatty Acid Beta oxidation I	4.84E-06	3
Isoleucine Degradation I	8.01E-04	2.236
LXR/RXR Activation	2.47E-11	-3.674

Examples of functional impacts

Disease or Function	p-value	z-score
Oxidation of fatty acid	2.30E-11	2.577
Synthesis of cholesterol	1.05E-17	2.109
Vascularization	3.50E-04	-2.067
Invasion of cells	3.43E-04	-2.181
Cholesterol transport	9.87E-05	-3.204

What other conditions have predictions similar to these?

Analysis Match in IPA - Understanding biological mechanisms in transcriptomics or proteomics datasets

— Sample to Insight

How can we find matches to other analyses?

Compare

Conceptually, create *signatures* of the predicted "entities" for every analysis and compare them:

Upstream	Predicted
Regulator	Activation
PPARA	Activated
ACSL3	Activated
INSR	Activated
RPE65	Activated
SREBF1	Activated
SCAP	Activated
SREBF2	Activated
ZNF423	Activated
PPARG	Activated
POR	Inhibited
ASXL1	Inhibited
NR1D2	Inhibited
ST3GAL5	Inhibited
CREB3L3	Inhibited
ACOX1	Inhibited
GRB14	Inhibited
PDE8A	Inhibited

Query signature

Does it	Upstream	Predicted
Match?	Regulator	Activation
YES	PPARA	Activated
	ABDH5	Activated
	ASXL2	Activated
YES	RPE65	Activated
YES	SREBF1	Activated
	KLF15	Activated
YES	SREBF2	Activated
	BTN2A2	Activated
	ACSBG1	Activated
	NR1I3	Inhibited
	CR1	Inhibited
	ASXL1	Inhibited
	DUT	Inhibited
YES	ACOX1	Inhibited
	NR1I3	Inhibited
YES	GRB14	Inhibited
YES	PDE8A	Inhibited

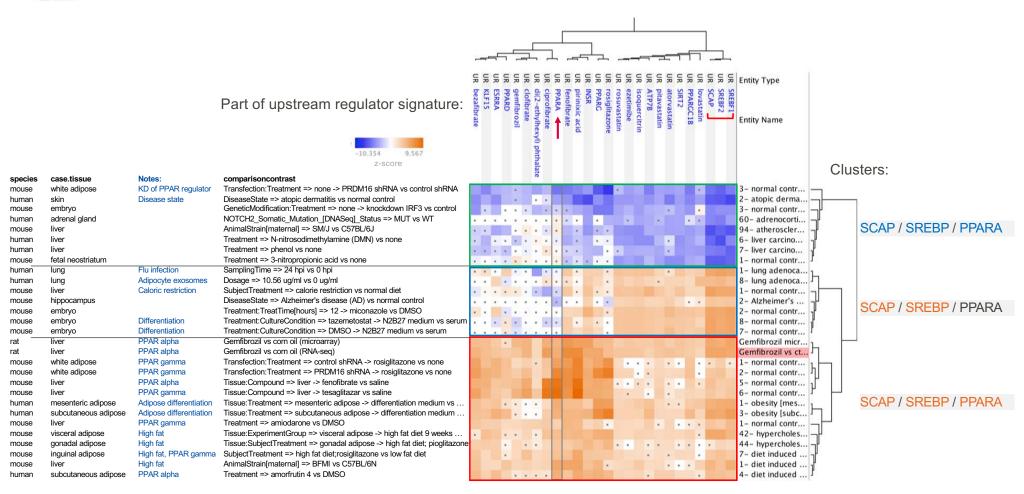
Signature from another analysis

Create and score signatures for

- Upstream Regulators
- Causal Networks
- Canonical Pathways
- Diseases & Functions

The sign of the entity (activated or inhibited) is important, but not its order in the signature

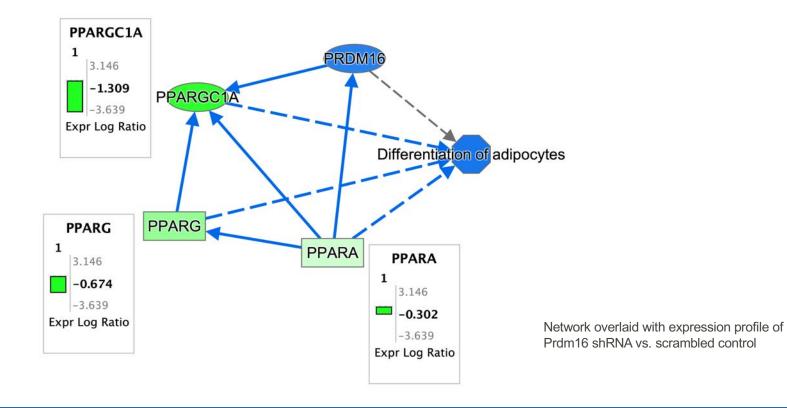
Sample to Insight



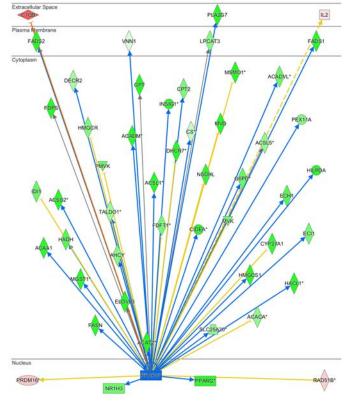
Analysis Match results for gemfibrozil in rat liver

Filtered to she	ow top ma	tching (>45	% match) o	r top anti-match	ning (< -45% match)			lpstream egulator		iseases & unctions	
Filtered to mos matches to ow	,	Examples	of available me	tadata	Brief description of the comparison		anonica athways		Master egulato		Overall average
Analysis Name	Project 🏾 🗏 🗵	case.diseas 🔳 🗵	case.tissue 🔳 🗵	comparisoncategory 🛛 🗷	comparisoncontrast	T X	CP 🗶 🛪	UR T ×	CN T X	DE TX	
Gemfibrozil microarray Pl	Microarray Gem						78.45	72.11	61.64	56.41	67.15
6- normal control [liver] N	MouseDisease	normal control	liver	Treatment vs. Control	Tissue:Compound => liver -> tesaglitazar vs saline		87.71	62.45	65.64	39.89	63.92
5- normal control [liver] N	MouseDisease	normal control	liver	Treatment vs. Control	Tissue:Compound => liver -> fenofibrate vs saline		78.45	58.31		47.67	61.74
4- diet induced obesity [s	HumanDisease	diet induced obesity	subcutaneous adip	Treatment vs. Control	Treatment => amorfrutin 4 vs DMSO		67.94	54.88		33.71	52.82
3- obesity [subcutaneous	HumanDisease	obesity	subcutaneous adip	Treatment1 vs. Treatment2	Tissue:Treatment => subcutaneous adipose tissue -> differentiation me	edi	73.38	50.00	A constraint	38.14	52.11
2- normal control [white a	MouseDisease	normal control	white adipose tissue	Treatment vs. Control	Transfection:Treatment => PRDM16 shRNA -> rosiglitazone vs none		62.02	50.00	0.000.000.000	47.67	51.10
1- normal control [white a	MouseDisease	normal control	white adipose tissue	Treatment vs. Control	Transfection:Treatment => control shRNA -> rosiglitazone vs none		62.02	46.90	46.90	47.67	50.87
7- normal control [embry	MouseDisease	normal control	embryo	Other Comparisons	Treatment:CultureCondition => DMSO -> N2B27 medium vs serum		67.94	53.85	50.99	30.15	50.73
1- normal control [liver] a	MouseDisease	normal control	liver	Treatment vs. Control	Treatment => amiodarone vs DMSO		67.94	57.45	41.23	30.15	49.19
42 - hypercholesterolemia	MouseDisease	hypercholesterolemia	visceral adipose tis	Treatment1 vs. Treatment2	Tissue:ExperimentGroup => visceral adipose tissue -> high fat diet 9 w	vee	73.38	57.45	61.64		48.12
8- lung adenocarcinoma	HumanDisease	lung adenocarcino	lung	Treatment vs. Control	Dosage => 10.56 ug/ml vs 0 ug/ml		67.94	52.92	41.23	30.15	48.06
1- obesity [mesenteric ad	liHumanDisease	obesity	mesenteric adipos	Treatment1 vs. Treatment2	Tissue:Treatment => mesenteric adipose tissue -> differentiation medi	ium	67.94	57.45	65.57		47.74
44- hypercholesterolemia	MouseDisease	hypercholesterolemia	gonadal adipose ti	Treatment vs. Control	Tissue:SubjectTreatment => gonadal adipose tissue -> high fat diet;pic	ogli	62.02	37.71	53.85	36.93	47.63
8- normal control [embry	MouseDisease	normal control	embryo	Other Comparisons	Treatment:CultureCondition => tazemetostat -> N2B27 medium vs ser	um	67.94	50.14	44.72	25.13	46.98
1- normal control [liver] N	MouseDisease	normal control	liver	Treatment vs. Control	SubjectTreatment => calorie restriction vs normal diet		62.02	45.36	40.17	39.89	46.86
7- diet induced obesity (i	MouseDisease	diet induced obesity	inguinal adipose tis	Treatment1 vs. Treatment2	SubjectTreatment => high fat diet;rosiglitazone vs low fat diet		73.38	38.00	45.83	30.15	46.84
2- Alzheimer's disease (A	MouseDisease	Alzheimer's diseas	hippocampus	Disease vs. Normal	DiseaseState => Alzheimer's disease (AD) vs normal control		67.94	43.59	44.72	30.15	46.60
1- diet induced obesity [I	MouseDisease	diet induced obesity	liver	Other Comparisons	AnimalStrain[maternal] => BFMI vs C57BL/6N		67.94	57.45	60.83		46.55
1- lung adenocarcinoma	HumanDisease	lung adenocarcino	lung	Treatment vs. Control	SamplingTime => 24 hpi vs 0 hpi		58.83	50.00	30.00	45.23	46.02
2- normal control [embry	MouseDisease	normal control	embryo	Treatment vs. Control	Treatment:TreatTime[hours] => 12 -> miconazole vs DMSO		67.94	55.68	56.57		45.05
60- adrenocortical carcin	TCGA	adrenocortical carc	adrenal gland	Other Comparisons	NOTCH2_Somatic_Mutation_[DNASeq]_Status => MUT vs WT		-55.47	-45.83	-34.64	-45.23	-45.29
94- atherosclerosis; hyper	MouseDisease	atherosclerosis;hyp	liver	Other Comparisons	AnimalStrain[maternal] => SM/J vs C57BL/6J		-73.38	-57.45	-51.96		-45.70
1- normal control [fetal n	MouseDisease	normal control	fetal neostriatum	Treatment vs. Control	Treatment => 3-nitropropionic acid vs none		-67.94	-48.99	-40.00	-30.15	-46.77
6- liver carcinoma [liver]	OncoGEO	liver carcinoma	liver	Treatment vs. Control	Treatment => N-nitrosodimethylamine (DMN) vs none		-67.94	-48.11	-37.42	-39.89	-48.34
3- normal control [embry	MouseDisease	normal control	embryo	Treatment vs. Control	GeneticModification:Treatment => none -> knockdown IRF3 vs control		-62.02	-55.68	-33.17	-42.64	-48.38
7- liver carcinoma [liver]	OncoGEO	liver carcinoma	liver	Treatment vs. Control	Treatment => phenol vs none		-73.38	-47.96	-40.00	-33.71	-48.76
2- atopic dermatitis [skin	HumanDisease	atopic dermatitis	skin	Disease vs. Normal	DiseaseState => atopic dermatities But what are the	dot	aile ho	hind th	o mat	ching2	4
3- normal control [white a	MouseDisease	normal control	white adipose tissue	Treatment vs. Control	Transfection:Treatment => none -> Dut What are the	uela			ie mai	ching (2

- Sample to Insight


Matching and anti-matching analyses fall into three distinct biological clusters

PRDM16 knockdown leads to downregulation of several relevant genes


PRDM16 is a regulator of PPAR activity in adipose tissue and master transcriptional coregulator in brown adipocytes, promoting expression of brown fat-selective genes and repression of white-selective genes

QIAGEN

Atopic dermatitis "anti-matches" the gemfibrozil treatment

PPAR α is predicted to be inhibited in this condition \rightarrow application of PPAR α agonists may treat it

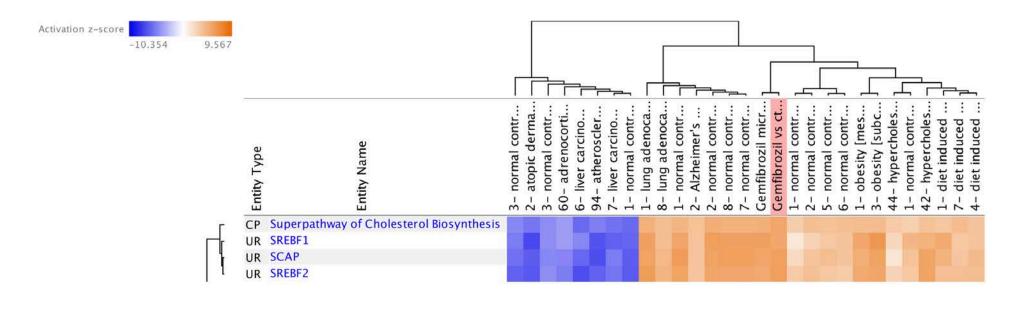
PPARA inhibited

Journal of Allergy and Clinical Immunology Volume 121, Issue 4, April 2008, Pages 962-968.e6

Atopic dermatitis and skin disease

Peroxisome proliferator-activated receptor α regulates skin inflammation and humoral response in atopic dermatitis

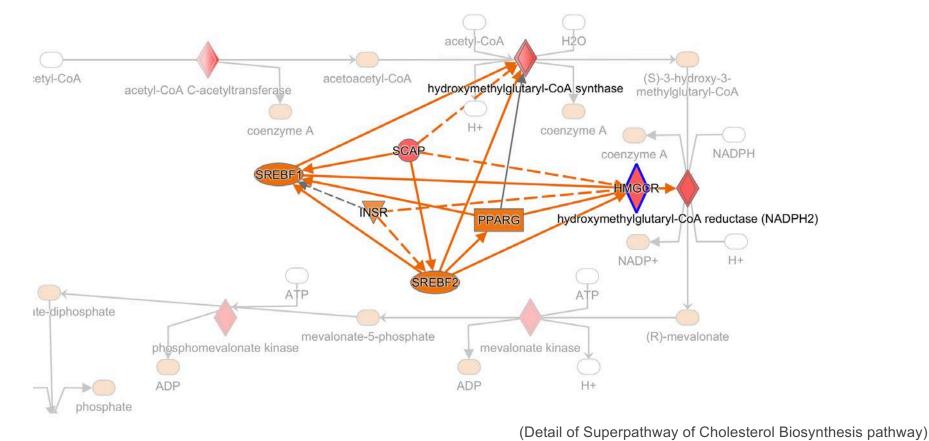
Delphine Staumont-Sallé MD ^{a, b, c, d, *, Georges Abboud BSc ^{a, b, c, *}, Céline Brénuchon MD ^{a, b, c}, Akira Kanda MD, PhD ^{a, b, c}, Thomas Roumier PhD ^{a, b, c}, Céline Lavogiez MD ^{a, b, c, d}, Sébastien Fleury ^{a, b, c}, Patrick Rémy ^{a, b, c}, Jean-Paul Papin ^{a, b, c}, Justine Bertrand-Michel ^{e, f}, François Tercé PhD ^{e, f, g}, Bart Staels PhD ^{b, c, h}, Emmanuel Delaporte MD ^{e, d}, Monique Capron PhD ^{a, b, c}, David Dombrowicz PhD ^{a, b, c}, 8}


Allergy. 2012 Jul;67(7):936-42. doi: 10.1111/j.1398-9995.2012.02844.x. Epub 2012 May 15.

Topical application of PPAR (but not β/δ or $\gamma)$ suppresses atopic dermatitis in NC/Nga mice.

Chiba T¹, Takeuchi S, Esaki H, Yamamura K, Kurihara Y, Moroi Y, Furue M.

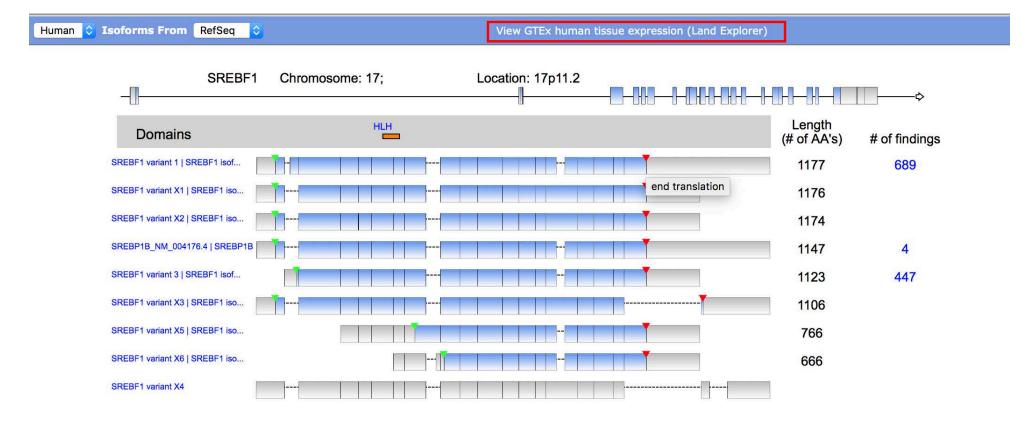
Clustering provides insight into the signature entities as well


Key regulators of cholesterol biosynthesis cluster with the enzymatic pathway, though not members of the pathway

Heatmap rotated 90° from previous views

All three regulators activate the rate-limiting step in cholesterol synthesis

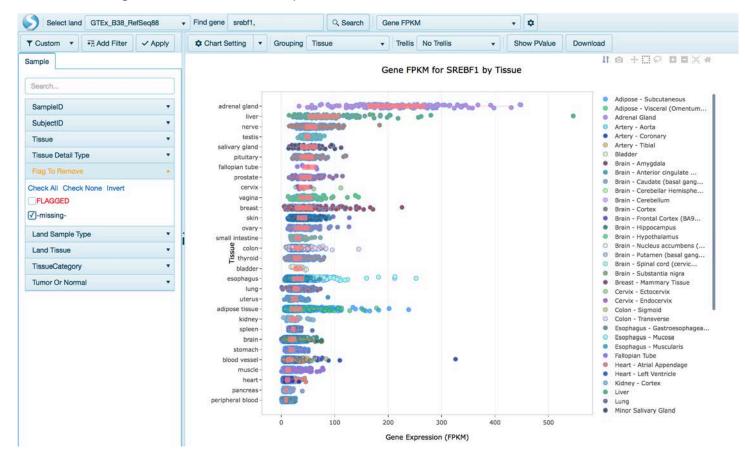
HMGCR is upregulated by gemfibrozil, consistent with the activation of the other regulators


----- Sample to Insight

QIAGEN

What is the expression of a gene in normal human tissues?

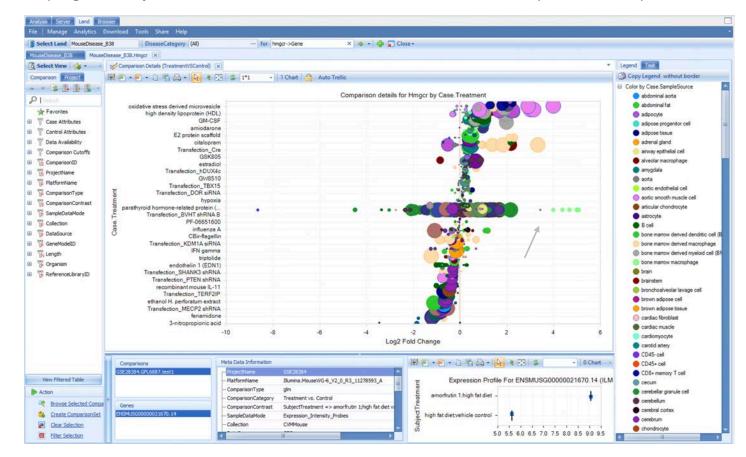
Land Explorer for IPA integration


QIAGEN

— Sample to Insight

Land Explorer for IPA

Plot GTEx data for a whole gene or for individual splice variant in 51 human tissues



— Sample to Insight -

QIAGEN

View detailed sample data in OmicSoft Array Studio Lands

Hmgcr is upregulated by amorfrutin and several other treatments in mouse (DiseaseLand)

- Sample to Insight

QIAGEN

Analysis Match in IPA - Understanding biological mechanisms in transcriptomics or proteomics datasets

Not included with Analysis Match

Discover related analyses

 In your own project folder or among analyses of thousands of public datasets with OncoLand and DiseaseLand from OmicSoft

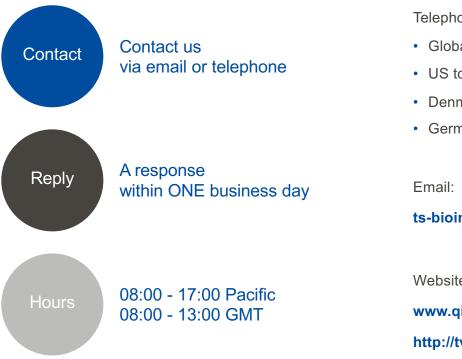
Build confidence

Sample to Insigh

• In the biology of your analysis

Make unexpected insights

· Via shared and anti-similar mechanisms between studies


White paper on Analysis Match is available for download

• https://go.qiagen.com/LP=1543

Literature-powered causal analytics from IPA combined with a massive dataset collection provided by OmicSoft creates a unique opportunity for you to make biological discoveries

Customer support and additional resources

Telephone:

- Global: +1 (650) 381-5111
- US toll free: +1 (866) 464-3684
- Denmark toll free: +45 80 82 01 67
- German toll: +49 (0)341 33975301

ts-bioinformatics@qiagen.com

Websites:

www.qiagenbioinformatics.com http://tv.qiagenbioinformatics.com

Sample to Insight